If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2-12r+15=0
a = 2; b = -12; c = +15;
Δ = b2-4ac
Δ = -122-4·2·15
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{6}}{2*2}=\frac{12-2\sqrt{6}}{4} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{6}}{2*2}=\frac{12+2\sqrt{6}}{4} $
| 8x-5=-4x-6 | | 2²+x²=3² | | x/4=21x= | | -21/2x=-1.75 | | x+x+1x+2=62 | | -41=-31+n | | 34=l+5+12 | | 9+(-2)+(4)=x+(-2)+3 | | 32=57-k | | w+4.3=6.19 | | 7=g+-12 | | 4-5x+2x=-3x+x | | 0.3x-18=9 | | 3p^2-6p=-3 | | 2x-4=8+x-14+(-5) | | 3|x|-6=15 | | 4y=38-1/4(8y+32) | | 75=m+25 | | 9x+(-4)+(-8x)=2x-2 | | 0=x^2-6x-6 | | 16=d+3 | | 31p^2+10p+1=6p^2 | | 31q^2+10q+1=6q | | 10x+4x=12 | | 4x-10+(-4x)=6x+(-x) | | 6x+45=8x+3 | | z=(5z+7)(2-z)=0 | | 7/8=-1/8x^2+2 | | X+(-4)+8=2x+(-7) | | 9=49+m | | 128=2(x)^3 | | 2x+2x+x+x=210 |